module Core.Unify(match_unify, unify, Fails) where
import Core.TT
import Core.Evaluate
import Control.Monad
import Control.Monad.State
import Data.List
import Debug.Trace
type Injs = [(TT Name, TT Name, TT Name)]
type Fails = [(TT Name, TT Name, Env, Err)]
data UInfo = UI Int Fails
deriving Show
data UResult a = UOK a
| UPartOK a
| UFail Err
match_unify :: Context -> Env -> TT Name -> TT Name -> [Name] -> [Name] ->
TC [(Name, TT Name)]
match_unify ctxt env topx topy dont holes =
case runStateT (un [] topx topy) (UI 0 []) of
OK (v, UI _ []) -> return (filter notTrivial v)
res ->
let topxn = normalise ctxt env topx
topyn = normalise ctxt env topy in
case runStateT (un [] topxn topyn)
(UI 0 []) of
OK (v, UI _ fails) ->
return (filter notTrivial v)
Error e ->
case runStateT (un [] topxn topy)
(UI 0 []) of
OK (v, UI _ fails) ->
return (filter notTrivial v)
_ -> tfail e
where
un names (P _ x _) tm
| holeIn env x || x `elem` holes
= do sc 1; checkCycle names (x, tm)
un names tm (P _ y _)
| holeIn env y || y `elem` holes
= do sc 1; checkCycle names (y, tm)
un bnames (V i) (P _ x _)
| fst (bnames!!i) == x || snd (bnames!!i) == x = do sc 1; return []
un bnames (P _ x _) (V i)
| fst (bnames!!i) == x || snd (bnames!!i) == x = do sc 1; return []
un bnames (Bind x bx sx) (Bind y by sy)
= do h1 <- uB bnames bx by
h2 <- un ((x, y) : bnames) sx sy
combine bnames h1 h2
un names (App fx ax) (App fy ay)
= do hf <- un names fx fy
ha <- un names ax ay
combine names hf ha
un names x y
| OK True <- convEq' ctxt x y = do sc 1; return []
| otherwise = do UI s f <- get
let r = recoverable x y
let err = CantUnify r
topx topy (CantUnify r x y (Msg "") [] s) (errEnv env) s
if (not r) then lift $ tfail err
else do put (UI s ((x, y, env, err) : f))
lift $ tfail err
uB bnames (Let tx vx) (Let ty vy) = do h1 <- un bnames tx ty
h2 <- un bnames vx vy
combine bnames h1 h2
uB bnames (Lam tx) (Lam ty) = un bnames tx ty
uB bnames (Pi tx) (Pi ty) = un bnames tx ty
uB bnames x y = do UI s f <- get
let r = recoverable (binderTy x) (binderTy y)
let err = CantUnify r topx topy
(CantUnify r (binderTy x) (binderTy y) (Msg "") [] s)
(errEnv env) s
put (UI s ((binderTy x, binderTy y, env, err) : f))
return []
sc i = do UI s f <- get
put (UI (s+i) f)
unifyFail x y = do UI s f <- get
let r = recoverable x y
let err = CantUnify r
topx topy (CantUnify r x y (Msg "") [] s) (errEnv env) s
put (UI s ((x, y, env, err) : f))
lift $ tfail err
combine bnames as [] = return as
combine bnames as ((n, t) : bs)
= case lookup n as of
Nothing -> combine bnames (as ++ [(n,t)]) bs
Just t' -> do ns <- un bnames t t'
let ns' = filter (\ (x, _) -> x/=n) ns
sc 1
combine bnames as (ns' ++ bs)
checkCycle ns p@(x, P _ _ _) = return [p]
checkCycle ns (x, tm)
| not (x `elem` freeNames tm) = checkScope ns (x, tm)
| otherwise = lift $ tfail (InfiniteUnify x tm (errEnv env))
checkScope ns (x, tm) =
case boundVs (envPos x 0 env) tm of
[] -> return [(x, tm)]
(i:_) -> lift $ tfail (UnifyScope x (fst (ns!!i))
(inst ns tm) (errEnv env))
where inst [] tm = tm
inst ((n, _) : ns) tm = inst ns (substV (P Bound n Erased) tm)
notTrivial (x, P _ x' _) = x /= x'
notTrivial _ = True
expandLets env (x, tm) = (x, doSubst (reverse env) tm)
where
doSubst [] tm = tm
doSubst ((n, Let v t) : env) tm
= doSubst env (subst n v tm)
doSubst (_ : env) tm
= doSubst env tm
unify :: Context -> Env -> TT Name -> TT Name -> [Name] -> [Name] ->
TC ([(Name, TT Name)], Fails)
unify ctxt env topx topy dont holes =
case runStateT (un False [] topx topy) (UI 0 []) of
OK (v, UI _ []) -> return (filter notTrivial v,
[])
res ->
let topxn = normalise ctxt env topx
topyn = normalise ctxt env topy in
case runStateT (un False [] topxn topyn)
(UI 0 []) of
OK (v, UI _ fails) ->
return (filter notTrivial v, reverse fails)
Error e -> tfail e
where
headDiff (P (DCon _ _) x _) (P (DCon _ _) y _) = x /= y
headDiff (P (TCon _ _) x _) (P (TCon _ _) y _) = x /= y
headDiff _ _ = False
injective (P (DCon _ _) _ _) = True
injective (P (TCon _ _) _ _) = True
injective (App f a) = injective f
injective _ = False
notP (P _ _ _) = False
notP _ = True
sc i = do UI s f <- get
put (UI (s+i) f)
errors = do UI s f <- get
return (not (null f))
uplus u1 u2 = do UI s f <- get
r <- u1
UI s f' <- get
if (length f == length f')
then return r
else do put (UI s f); u2
un :: Bool -> [(Name, Name)] -> TT Name -> TT Name ->
StateT UInfo
TC [(Name, TT Name)]
un = un'
un' :: Bool -> [(Name, Name)] -> TT Name -> TT Name ->
StateT UInfo
TC [(Name, TT Name)]
un' fn names x y | x == y = return []
un' fn names topx@(P (DCon _ _) x _) topy@(P (DCon _ _) y _)
| x /= y = unifyFail topx topy
un' fn names topx@(P (TCon _ _) x _) topy@(P (TCon _ _) y _)
| x /= y = unifyFail topx topy
un' fn names topx@(P (DCon _ _) x _) topy@(P (TCon _ _) y _)
= unifyFail topx topy
un' fn names topx@(P (TCon _ _) x _) topy@(P (DCon _ _) y _)
= unifyFail topx topy
un' fn names topx@(Constant _) topy@(P (TCon _ _) y _)
= unifyFail topx topy
un' fn names topx@(P (TCon _ _) x _) topy@(Constant _)
= unifyFail topx topy
un' fn bnames tx@(P _ x _) ty@(P _ y _)
| (x,y) `elem` bnames || x == y = do sc 1; return []
| injective tx && not (holeIn env y || y `elem` holes)
= unifyTmpFail tx ty
| injective ty && not (holeIn env x || x `elem` holes)
= unifyTmpFail tx ty
un' fn bnames xtm@(P _ x _) tm
| holeIn env x || x `elem` holes
= do UI s f <- get
if (notP tm && fn)
then unifyTmpFail xtm tm
else do sc 1
checkCycle bnames (x, tm)
| not (injective xtm) && injective tm = unifyFail xtm tm
un' fn bnames tm ytm@(P _ y _)
| holeIn env y || y `elem` holes
= do UI s f <- get
if (notP tm && fn)
then unifyTmpFail tm ytm
else do sc 1
checkCycle bnames (y, tm)
| not (injective ytm) && injective tm = unifyFail ytm tm
un' fn bnames (V i) (P _ x _)
| fst (bnames!!i) == x || snd (bnames!!i) == x = do sc 1; return []
un' fn bnames (P _ x _) (V i)
| fst (bnames!!i) == x || snd (bnames!!i) == x = do sc 1; return []
un' fn bnames appx@(App _ _) appy@(App _ _)
= unApp fn bnames appx appy
un' fn bnames x (Bind n (Lam t) (App y (P Bound n' _)))
| n == n' = un' False bnames x y
un' fn bnames (Bind n (Lam t) (App x (P Bound n' _))) y
| n == n' = un' False bnames x y
un' fn bnames x (Bind n (Lam t) (App y (V 0)))
= un' False bnames x y
un' fn bnames (Bind n (Lam t) (App x (V 0))) y
= un' False bnames x y
un' fn bnames (App f x) (Bind n (Pi t) y)
| noOccurrence n y && x == y
= un' False bnames f (Bind (MN 0 "uv") (Lam (TType (UVar 0)))
(Bind n (Pi t) (V 1)))
un' fn bnames (Bind x bx sx) (Bind y by sy)
= do h1 <- uB bnames bx by
h2 <- un' False ((x,y):bnames) sx sy
combine bnames h1 h2
un' fn bnames x y
| OK True <- convEq' ctxt x y = do sc 1; return []
| otherwise = do UI s f <- get
let r = recoverable x y
let err = CantUnify r
topx topy (CantUnify r x y (Msg "") [] s) (errEnv env) s
if (not r) then lift $ tfail err
else do put (UI s ((x, y, env, err) : f))
return []
unApp fn bnames appx@(App fx ax) appy@(App fy ay)
| (injective fx && injective fy)
|| (injective fx && rigid appx && metavarApp appy)
|| (injective fy && rigid appy && metavarApp appx)
|| (injective fx && metavarApp fy && ax == ay)
|| (injective fy && metavarApp fx && ax == ay)
= do let (headx, _) = unApply fx
let (heady, _) = unApply fy
checkHeads headx heady
uplus
(do hf <- un' True bnames fx fy
let ax' = hnormalise hf ctxt env (substNames hf ax)
let ay' = hnormalise hf ctxt env (substNames hf ay)
ha <- un' False bnames ax' ay'
sc 1
combine bnames hf ha)
(do ha <- un' False bnames ax ay
let fx' = hnormalise ha ctxt env (substNames ha fx)
let fy' = hnormalise ha ctxt env (substNames ha fy)
hf <- un' False bnames fx' fy'
sc 1
combine bnames hf ha)
| otherwise =
do let (headx, argsx) = unApply appx
let (heady, argsy) = unApply appy
uplus (
if (length argsx == length argsy &&
((headx == heady && inenv headx) || (argsx == argsy) ||
(and (zipWith sameStruct (headx:argsx) (heady:argsy)))))
then
do uf <- un' True bnames headx heady
failed <- errors
if (not failed) then unArgs uf argsx argsy
else return []
else
unifyTmpFail appx appy)
(unifyTmpFail appx appy)
where hnormalise [] _ _ t = t
hnormalise ns ctxt env t = normalise ctxt env t
checkHeads (P (DCon _ _) x _) (P (DCon _ _) y _)
| x /= y = unifyFail appx appy
checkHeads (P (TCon _ _) x _) (P (TCon _ _) y _)
| x /= y = unifyFail appx appy
checkHeads (P (DCon _ _) x _) (P (TCon _ _) y _)
= unifyFail appx appy
checkHeads (P (TCon _ _) x _) (P (DCon _ _) y _)
= unifyFail appx appy
checkHeads _ _ = return []
unArgs as [] [] = return as
unArgs as (x : xs) (y : ys)
= do let x' = hnormalise as ctxt env (substNames as x)
let y' = hnormalise as ctxt env (substNames as y)
as' <- un' False bnames x' y'
vs <- combine bnames as as'
unArgs vs xs ys
metavarApp tm = let (f, args) = unApply tm in
metavar f &&
all (\x -> metavarApp x) args
&& nub args == args
metavarArgs tm = let (f, args) = unApply tm in
all (\x -> metavar x || inenv x) args
&& nub args == args
metavarApp' tm = let (f, args) = unApply tm in
all (\x -> pat x || metavar x) (f : args)
&& nub args == args
sameArgStruct appx appy
= let (_, ax) = unApply appx
(_, ay) = unApply appy in
length ax == length ay &&
and (zipWith sameStruct ax ay)
sameStruct fapp@(App f x) gapp@(App g y)
= let (f',a') = unApply fapp
(g',b') = unApply gapp in
(f' == g' && length a' == length b' &&
(injective f' || injective g'))
|| (sameStruct f g && sameStruct x y)
sameStruct (P _ x _) (P _ y _) = True
sameStruct (V i) (V j) = i == j
sameStruct (Constant x) (Constant y) = True
sameStruct (P _ _ _) (Constant y) = True
sameStruct (Constant x) (P _ _ _) = True
sameStruct (Bind n t sc) (P _ _ _) = True
sameStruct (P _ _ _) (Bind n t sc) = True
sameStruct (Bind n t sc) (Bind n' t' sc') = sameStruct sc sc'
sameStruct _ _ = False
rigid (P (DCon _ _) _ _) = True
rigid (P (TCon _ _) _ _) = True
rigid t@(P Ref _ _) = inenv t
rigid (Constant _) = True
rigid (App f a) = rigid f && rigid a
rigid t = not (metavar t)
metavar t = case t of
P _ x _ -> (x `elem` holes || holeIn env x) &&
not (x `elem` dont)
_ -> False
pat t = case t of
P _ x _ -> x `elem` holes || patIn env x
_ -> False
inenv t = case t of
P _ x _ -> x `elem` (map fst env)
_ -> False
notFn t = injective t || metavar t || inenv t
unifyTmpFail x y
= do UI s f <- get
let r = recoverable x y
let err = CantUnify r
topx topy (CantUnify r x y (Msg "") [] s) (errEnv env) s
put (UI s ((topx, topy, env, err) : f))
return []
unifyFail x y = do UI s f <- get
let r = recoverable x y
let err = CantUnify r
topx topy (CantUnify r x y (Msg "") [] s) (errEnv env) s
put (UI s ((topx, topy, env, err) : f))
lift $ tfail err
uB bnames (Let tx vx) (Let ty vy)
= do h1 <- un' False bnames tx ty
h2 <- un' False bnames vx vy
sc 1
combine bnames h1 h2
uB bnames (Guess tx vx) (Guess ty vy)
= do h1 <- un' False bnames tx ty
h2 <- un' False bnames vx vy
sc 1
combine bnames h1 h2
uB bnames (Lam tx) (Lam ty) = do sc 1; un' False bnames tx ty
uB bnames (Pi tx) (Pi ty) = do sc 1; un' False bnames tx ty
uB bnames (Hole tx) (Hole ty) = un' False bnames tx ty
uB bnames (PVar tx) (PVar ty) = un' False bnames tx ty
uB bnames x y = do UI s f <- get
let r = recoverable (binderTy x) (binderTy y)
let err = CantUnify r topx topy
(CantUnify r (binderTy x) (binderTy y) (Msg "") [] s)
(errEnv env) s
put (UI s ((binderTy x, binderTy y, env, err) : f))
return []
checkCycle ns p@(x, P _ _ _) = return [p]
checkCycle ns (x, tm)
| not (x `elem` freeNames tm) = checkScope ns (x, tm)
| otherwise = lift $ tfail (InfiniteUnify x tm (errEnv env))
checkScope ns (x, tm) =
case boundVs (envPos x 0 env) tm of
[] -> return [(x, tm)]
(i:_) -> lift $ tfail (UnifyScope x (fst (ns!!i))
(inst ns tm) (errEnv env))
where inst [] tm = tm
inst ((n, _) : ns) tm = inst ns (substV (P Bound n Erased) tm)
combineArgs bnames args = ca [] args where
ca acc [] = return acc
ca acc (x : xs) = do x' <- combine bnames acc x
ca x' xs
combine bnames as [] = return as
combine bnames as ((n, t) : bs)
= case lookup n as of
Nothing -> combine bnames (as ++ [(n,t)]) bs
Just t' -> do ns <- un' False bnames t t'
let ns' = filter (\ (x, _) -> x/=n) ns
sc 1
combine bnames as (ns' ++ bs)
boundVs :: Int -> Term -> [Int]
boundVs i (V j) | j <= i = []
| otherwise = [j]
boundVs i (Bind n b sc) = boundVs (i + 1) sc
boundVs i (App f x) = let fs = boundVs i f
xs = boundVs i x in
nub (fs ++ xs)
boundVs i _ = []
envPos x i [] = 0
envPos x i ((y, _) : ys) | x == y = i
| otherwise = envPos x (i + 1) ys
recoverable (P (DCon _ _) x _) (P (DCon _ _) y _)
| x == y = True
| otherwise = False
recoverable (P (TCon _ _) x _) (P (TCon _ _) y _)
| x == y = True
| otherwise = False
recoverable (Constant _) (P (DCon _ _) y _) = False
recoverable (P (DCon _ _) x _) (Constant _) = False
recoverable (Constant _) (P (TCon _ _) y _) = False
recoverable (P (TCon _ _) x _) (Constant _) = False
recoverable (P (DCon _ _) x _) (P (TCon _ _) y _) = False
recoverable (P (TCon _ _) x _) (P (DCon _ _) y _) = False
recoverable p@(Constant _) (App f a) = recoverable p f
recoverable (App f a) p@(Constant _) = recoverable f p
recoverable p@(P _ n _) (App f a) = recoverable p f
recoverable (App f a) (App f' a')
= recoverable f f'
recoverable _ _ = True
errEnv = map (\(x, b) -> (x, binderTy b))
holeIn :: Env -> Name -> Bool
holeIn env n = case lookup n env of
Just (Hole _) -> True
Just (Guess _ _) -> True
_ -> False
patIn :: Env -> Name -> Bool
patIn env n = case lookup n env of
Just (PVar _) -> True
Just (PVTy _) -> True
_ -> False